ENDORSEMENT

This document was developed by industry for industry. Enform gratefully acknowledges the support of the endorsing organizations in the development of this document.

- Canadian Association of Geophysical Contractors (CAGC)
- Canadian Association of Oilwell Drilling Contractors (CAODC)
- Canadian Association of Petroleum Producers (CAPP)
- Canadian Energy Pipeline Association (CEPA)
- Explorers and Producers Association of Canada (EPAC)
- Petroleum Services Association of Canada (PSAC)

ABOUT ENFORM

Enform is the upstream oil and gas industry’s advocate and leading resource for the continuous improvement of safety performance. Our mission is to help companies achieve their safety goals by providing practices, assessment, training, support, metrics and communication.

AVAILABILITY

This document as well as future revisions and additions, is available from:

Enform Canada
5055-11 Street NE
Calgary, Alberta T2E 8N4
Phone: 403.516.8000
Toll Free: 1.800.667.5557
Fax: 403.516.8166
Website: www.enform.ca

ACKNOWLEDGEMENT

Enform gratefully acknowledges the many individuals who volunteered their time and effort to complete this document as well as The National Institute for Occupational Safety and Health (NIOSH) for granting Enform access to their work and research related to managing risk through journey management.

DISCLAIMER

This document is intended to be flexible in application and provide guidance to users rather than act as a prescriptive solution. Recognizing that one solution is not appropriate for all users and situations, it presents generally accepted guidelines that apply to industry situations, as well as recommended practices that may suit a company’s particular needs. While we believe that the information contained herein is reliable under the conditions and subject to the limitations set out, Enform does not guarantee its accuracy. The use of this document or any information contained will be at the user’s sole risk, regardless of any fault or negligence of Enform and the participating industry associations.

COPYRIGHT/RIGHT TO PRODUCE

Copyright for this document is held by Enform, 2015. All rights reserved. Enform encourages the copying, reproduction and distribution of this document to promote health and safety in the workplace, provided that Enform is acknowledged. However, no part of this publication may be copied, reproduced or distributed for profit or other commercial enterprise, nor may any part be incorporated into any other publication, without the written permission of Enform.

ENFORM CALGARY
5055 - 11th St NE
Calgary, Alberta
T2E 8N4
Phone: 403.516.8000
Toll free: 1.800.667.5557
Fax: 403.516-8166

ENFORM BC
#1240, 9600 - 93rd Ave.
Fort St. John,
British Columbia
V1J 5Z2
Phone: 250.785.6009
Toll free: 1.855.436.3676
Fax: 250.785.6013

ENFORM NISKU
1803 11th Street
Nisku, Alberta
T9E 1A8
Phone: 780.955.7770
Toll free: 1.800.667.5557
Fax: 780.955.2454

ENFORM SASKATCHEWAN
Suite 208, 117 - 3rd St NE
Weyburn, Saskatchewan
S4H 0W3
Phone: 306.842.9822
Toll free: 1.877.336.3676

The Safety Association for Canada’s Upstream Oil and Gas Industry
Table of Contents

1.0 Introduction ... 5

1.1 The Need for Journey Management .. 5

1.2 Defining Journey Management .. 7

2.0 Establishing a Journey Management Program .. 8

2.1 Policies and Directives .. 10

2.2 Roles and Responsibilities ... 10

2.3 Communications .. 11

3.0 Manage Each Trip .. 12

3.1 Planning the Trip .. 12

3.1.1 Determine Necessity of the Trip .. 12

3.1.2 Assess Trip Hazards .. 12

3.1.3 Develop and / or Reference a Consolidated Risk Register ... 16

3.1.4 Develop Risk Controls ... 16

3.1.5 Evaluate the Trip Plan ... 17

3.2 Preparing for the Trip ... 19

3.3 Undertaking the Trip ... 19

3.4 Completing the Trip .. 21

4.0 Program Review and Continuous Improvement ... 22

5.0 Summary .. 23

Appendix 1: References and Resources ... 24
Preface

Purpose

The purpose of this guideline is to help organizations in the oil and gas sector design and implement an effective journey management program. The goal of the guideline is to assist in assessing journey risk exposures and in minimizing unnecessary trips.

Audience

The intended audience of this document includes oil and gas industry supervisors, managers, health and safety personnel, senior management and executives, journey management committees, stakeholder groups and all others responsible for designing and implementing a journey management program.

How to Use This Guideline

Any organization within or supporting the oil and gas industry can use this guideline to assist with the design and implementation of all, or parts of, a journey management program as a stand-alone program or through integration into an existing management system.

Scope and Limitations

This guideline includes information about journey management, elements of a journey management program and strategies to design and implement a journey management program. It does not go into detail about fitness for work or health and wellness processes.

This guideline is not intended to replace any in-depth training. It provides a framework to help identify components to consider in a journey management program. Although designed for land-travel, elements may be considered for other modes of transportation (air, rail, water).

Detailed information on fatigue risk management and driver training may be referenced in your program. This information is widely available from a variety of sources including Enform.

This guideline describes several concepts and components. Based on industry best practices, the intent of the guideline is to provide a scalable journey management program outline. While representatives from a range of companies have agreed that this advice seems appropriate for their organizations, the specific approach and its terminology might not be suitable for all.
Regulations

A well-established occupational health and safety regulatory framework has been established in Canada. The OHS legislation provides the framework and defines the responsibilities for workers, supervisors, and employers to work safely and follow safe work practices.

General Duty Clauses

Commonly referred to as the “General Duty Clause”, federal, provincial and territorial regulations in Canada have similar occupational health and safety legislation that describes the obligations of employers and workers. While the specific wording varies between jurisdictions, the intent is the same:

Everyone who undertakes, or has the authority, to direct how another person does work or performs a task is under a legal duty to take steps to prevent bodily harm to that person, or any other person, arising from that work or task.

Important elements of the due diligence needed to meet the general duty of care obligation include:

- Confirming worker competency
- Identifying and controlling hazards
- Conforming with industry standards
- Monitoring the worker to verify acceptable performance

Specifications and Certifications

Each province requires employers to ensure that equipment is adequate for the job. The manufacturer's specifications should answer any questions about equipment use, maintenance, and/or operation.

Applicable Regulations

Other regulations that apply to journey management include:

Alberta:
- OH&S Code Part 28 Working alone
- OH&S Code Part 19 Powered mobile equipment
- Traffic Safety Act

British Columbia:
- OHS Regulation Part 4 Working alone or in isolation
- OHS Regulation Part 17 Transportation of workers
- Motor Vehicle Act
Saskatchewan:
- OH&S Regulation Part III Working alone or at isolated place of employment
- OH&S Regulation Part IX Safeguards, Storage, Warning Signs and Signals
- OH&S Regulation Part XI Powered Mobile Equipment
- Traffic Safety Act

Canada:
- Part III Motor Vehicle Operators Hours of Work Regulations
- Motor Vehicle Transport Act

It is the employer’s legal obligation to ensure compliance with current regulatory requirements, which includes the required qualifications of all supervisors and workers. Legislation impacting the broad topic of journey management varies based on the makeup of each organization, but may include working alone legislation, cargo securement rules, vehicle and equipment regulation, hours of service, labour standards and driver licensing. This is in addition to any requirements that exist between client and contractor and legislated prime contractor responsibilities.

Revision Process

Enform Guidelines are developed by industry for industry. Enform acts as an administrator and publisher.

Each guideline is reviewed on a three-year cycle. Technical issues or changes may prompt a re-evaluation and review of this guideline in whole or in part. This is the first edition. For details on the creation and revision process, visit the Enform website at www.enform.ca.

Revision History

<table>
<thead>
<tr>
<th>Edition</th>
<th>Release Date</th>
<th>Scheduled Review Date</th>
<th>Remarks and Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>July 2015</td>
<td>2018</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Contributors

The following individuals helped develop this guideline through the Journey Management Committee (2015). Enform is grateful for each participant’s efforts and acknowledges the support of their employers.

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt Broughton</td>
<td>SAExploration</td>
<td>CAGC</td>
</tr>
<tr>
<td>Chris Davis</td>
<td>Enform</td>
<td>Program Manager</td>
</tr>
<tr>
<td>Shawn Furlong</td>
<td>Penn West Exploration</td>
<td>CAPP</td>
</tr>
<tr>
<td>Jason Kumagai</td>
<td>Atkins</td>
<td>Consultant</td>
</tr>
<tr>
<td>Dave Kruger</td>
<td>Welltec</td>
<td>PSAC</td>
</tr>
<tr>
<td>Neil Looker</td>
<td>Alberta OHS</td>
<td></td>
</tr>
<tr>
<td>James Linnell</td>
<td>Precision</td>
<td>CAODC</td>
</tr>
<tr>
<td>Gary Lyster</td>
<td>Akita Drilling</td>
<td>CAODC</td>
</tr>
<tr>
<td>Joy Piehl</td>
<td>WorkSafeBC</td>
<td></td>
</tr>
<tr>
<td>Julian Serfontein</td>
<td>Shell</td>
<td>CAPP</td>
</tr>
<tr>
<td>Chris Williams</td>
<td>Schlumberger</td>
<td>PSAC</td>
</tr>
<tr>
<td>Jason Winsor</td>
<td>Encana</td>
<td>CAPP</td>
</tr>
</tbody>
</table>
1.0 Introduction

It is important that every journey be managed in a way that will optimize safety and reduce transportation-related risks. Companies are encouraged to understand the need and scope of journey management and develop a program scaled and fit-for-purpose to their specific organization.

1.1 The Need for Journey Management

The objective of journey management is to eliminate driving related incidents that bring harm to people and property. Organizations can minimize injury and damage by identifying and managing hazards and minimizing exposure to unnecessary travel. Addressing these issues provides the added benefit of reducing trip delays due to weather and mechanical breakdowns.

From 2010-2014 in the Alberta, British Columbia and Saskatchewan oil and gas industry, Workers Compensation injury data shows that, as a proportion of all oil and gas workplace injuries, vehicle related injuries are responsible for 5% of claims, 13% of claim cost and 24% of days lost.

In addition to the above, costs associated with vehicle related injury claims over the same period are 2½ times greater than the average injury claim.
Recognizing the need to help reduce the number of serious road traffic incidents and fatalities, the International Association of Oil and Gas Producers (IOGP) developed a journey management guideline. The guideline provides guidance on how to implement land transport safety elements in a management system (OGP, 2011a). IOGP recommends that oil and gas companies develop and implement journey management procedures.

The oil and gas industry recognizes journey management as an effective risk management strategy for reducing vehicle incidents and developing plans to respond effectively when incidents take place.

When evaluating the business case for journey management, companies are encouraged to examine historical incidents, associated costs, regulatory requirements and client / contractor expectations.

This guideline outlines key considerations for developing a journey management program in the upstream Canadian oil and gas industry.
1.2 Defining Journey Management

There is often confusion when distinguishing between a ‘journey’ and a ‘trip’ and the appropriate management of each. Journeys are often considered to involve a single piece of travel and long distances, whereas trips are often considered short travel periods.

In some workplaces short trips pose minor risk, while in others the risk is higher. With varied exposure to mixed levels of risk, it can be helpful to customize these definitions specific to organizational needs.

Implementation of risk controls may also be tailored to the needs of your organization. In some cases it may be determined that a formal journey management plan is not necessary for some trips. Providing clarity in these definitions can assist with the successful implementation of your journey management program.

For the purposes of this guideline, a journey consists of one or more trips. A trip is a short journey.

This guideline accepts the following definitions defined by Retzer et al, 2014:

Journey management is a planned and systematic strategy to reduce transportation-related risks within a company’s operations. Trip management is one component of journey management.

Trip management is the day-to-day process drivers and supervisors follow to minimize risk for necessary trips.

In addition to trip management, journey management requires a process to assess and minimize transportation related hazards. A defined mechanism to eliminate unnecessary trips is also required. Routine trips typically involve travelling within a pre-determined locale such as a plant site, to and from the job site, and trips around a town or a city. Usually, a routine trip does not involve the use of maps or GPS. Routine trips are the most common types of trips and they often have the lowest risk. However, escalating factors such as poor weather or poor visibility increase the risk exposure for routine trips and warrant the use of risk assessment processes normally used for non-routine trips. Worksite location, type of road and time of day are some of the factors that can impact this risk profile significantly and must be considered in a journey management program.

Non-routine trips may involve travelling long distances on infrequently travelled roads. These trips can pose a significantly higher risk than routine trips.
2.0 Establishing a Journey Management Program

This guideline will help organizations build a journey management program or integrate journey management elements within existing management systems. The guideline is not intended to be prescriptive, but it provides elements that can be selected depending on their relevance to a company’s operations.

Organizations may establish practices and procedures related to trip management, which may evolve over time into a program integrated within a larger management system.

The success of a journey management program requires a commitment from a company’s management. With commitment from organizational leadership, existing safety frameworks, policies and standards can be augmented with procedures to address journey management.

A journey management program can apply to all levels of drivers within an organization. For commercial drivers, consideration of other transport regulations, inspections and hours of service rules is required. Additional consideration may be required for contractors in order to incorporate contractor and sub-contractor journey management programs.

In some situations, it may be appropriate to apply journey management principles to commuting. Examples may include, but are not limited to:

- business trips
- driving to/from work and home
- driving to/from worksite and camp/accommodation

Examples from the oil and gas industry include the movement of crews to and from worksites. Often rig crews must commute to and from service and drilling operations in remote areas. This can add significant hours to both ends of a work shift and requires attention and understanding from all stakeholders to manage the travel and fatigue risk effectively.

This guideline describes the following key elements to consider:

- planning the trip
- preparing for the trip
- undertaking the trip
- completing the trip
Key elements of journey management:

1. Planning the trip
2. Preparing for the trip
3. Undertaking the trip
4. Completing the trip

The figure above shows the key elements of journey management.
2.1 Policies and Directives

The success of a journey management program relies on full management leadership, commitment and accountability. Safety policies and directives should be established to formalize the company’s expectations regarding journey management. Existing policies may adopt principles of journey management and risk assessment. Refer to the example policy found in appendix 1.

2.2 Roles and Responsibilities

It is important to identify all persons within the organization with responsibility for developing, implementing and maintaining a journey management program. Every trip should have an appointed journey manager, or designate.

Assigned responsibilities may include, but are not limited to:

- **Trip management plan preparation** – May include the proposed route, refuelling points, rest stops, timing, etc. Refer to Section 3.0 for more information.

- **Plan Review** – Review of the plan should ensure the driver is qualified and the vehicles are fit for purpose with all required safety equipment / devices.

- **Pre-trip briefing** – A pre-trip briefing should be conducted to discuss details of the trip management plan. Personnel must fully understand the details documented in the plan.

- **Communication expectations** – Communicate any unplanned deviations from the plan. The journey manager is informed when the vehicle arrives at the destination in order to close the trip/journey. The journey manager should be informed of any delays from the planned arrival to appropriately respond.

- **Trip De-brief** – De-brief following the trip.

The matrix below is an example of how responsibilities may be assigned to roles within an organization. As each organization is unique, listed roles may differ and individuals may take on multiple roles.
2.3 Communications

All personnel including contractors need to be informed of the journey management program. Stakeholders should be consulted during development. Relevant documents should be distributed to those who need them and documentation should be maintained.

Formal communication structures should be in place to ensure risk assessment results can be effectively shared, evaluated and approved. Communications protocols should be established to ensure pre-trip and post-trip briefings are conducted.

Necessary training should be identified. This may include sessions to communicate the goals and benefits of journey management, manager, supervisor and worker education and competency evaluations specific to each role. The program should identify on-going training needs and develop strategies to implement the training.
3.0 Manage Each Trip

3.1 Planning the Trip

Trip management requires proper planning and preparation. Although routine trips are likely to pose a lower risk than non-routine trips, both may require development of a trip plan. The trip plan documents the following details of the trip:

- necessity of the trip
- hazard assessment
- risk controls
- approvals

The key elements of a trip plan are detailed below.

3.1.1 Determine Necessity of the Trip

When assessing risk, the first question should be to determine if the trip is necessary (OGP, 2011d). In some cases the trip can be postponed until necessary or conditions are more favourable. In some cases, this consideration reveals the trip is not necessary and it is cancelled. Travel within organizations can often be minimized by combining trips.

If the trip is necessary, consider if there is a non-driving alternative. There may be a safer mode of transport e.g., bus, crew transport, charters, etc. If commuting is required, consider the alertness of the driver and possible alternatives to driving such as car-pooling, public transportation or taxi services.

In some instances, air transportation, freight forwarders and combining loads with other businesses may be alternatives to consider. Transportation service providers could also be a consideration. It may be safer to utilize companies that are dedicated to such activities (rig moving company, hot shot services) to move equipment and / or people.

3.1.2 Assess Trip Hazards

A trip hazard assessment should be conducted to identify possible hazards that may harm workers, their equipment and cargo, and the surrounding environment. When a hazard assessment is conducted, it is important to record specific details, including:

- assessment date
- assessor
- start point
- end point
- communication methods including contact details
• number of vehicles
• number of passengers
• inspections

A hazard register may be used to capture specific details of the hazards, as well as the corresponding controls. The register may include details such as:

• hazard location (mile marker, GPS coordinates)
• risk level (ranking)
• availability of phone service/correct two-way radio frequency, etc.
• hazard detail (e.g. freeze thaw conditions impacted by daylight or darkness, construction, weather/road/visibility conditions)
• controls
• comments

As part of a comprehensive assessment, consider the following aspects:

Road Hazards

The route should be clearly defined and mapped. It is important to consider the following road conditions for the selected route:

• speed limits (regulatory and company/client policy based)
• road conditions e.g. unpaved, loose packed gravel, poor drainage, frequent mud, overgraded shoulders, frost heaving, runoff, etc.
• other road users: recreational (campers, cyclists, ATV’s), work operations (over dimension loads, logging trucks, farming operations), school areas (children)
• weather conditions
• light e.g. day, night, dusk, etc.
• consideration for wildlife movement
• temperature
• road directions and detail
• hazardous areas e.g. intersections, crossings, merging lanes, road work projects, speed changes, weight restrictions on roads / bridges
• obstructions, low clearance
• railroad crossings (more information available at: www.operationlifesaver.ca)

IOGP has produced a recommended practice for land transportation safety, which provides an
example of a road hazards assessment tool (OGP Guidance Note 1 – Road Hazard Assessment, 2011b).

A road hazard analysis example and links to on-line resources can be found in Appendix 1.

Driver Considerations

Driver suitability includes the following:

- qualifications (training) - ensure drivers are qualified for the trip
- competency – do the driver’s skills match the assigned task? (e.g. towing a trailer, travel off-highway)
- experience
- additional requirements for commercial versus non-commercial drivers
- contractor / third party requirements
- conflicting priorities e.g. crew change, client demands, job deadlines, personal schedules
- fit for duty - consider possible alcohol or drug impairment, fatigue, low alertness, sickness and health / wellness, as well as how this can or will be evaluated

Fatigue has been recognized as a risk for drivers in the Oil and Gas industry. The driver's schedule should, as required, be compliant with hours of service regulations align with accepted fatigue management practices (North American Fatigue Management Program: www.nafmp.com/en).

A detailed hazard assessment may also consider:

- circadian dips and night driving
- time since last sleep
- travel duration
The following example outlines a fatigue risk management strategy:

Schlumberger adopted “Night Driving Golden Rules” to help manage fatigue-related risk. These rules include:

1. The drivers are alert and rested.
2. A Road Hazard Analysis and route plan has been developed and understood by drivers.
3. Single vehicle trips have a passenger remain awake and alert for the entire trip.
4. The journey takes no more than 4 hours during the night-driving hours.
Vehicle Considerations
The type of vehicle must be suitable for the terrain, trip conditions and task. The risk assessment should consider:

- whether the vehicle been serviced and inspected
- traction conditions – controls may include 4 wheel drive, tire chains and winter tires
- trailer towing – although “rated” to tow, is the tow vehicle of appropriate size and properly equipped (brake control, hitch) to handle a trailer in these conditions? (steep grades, off-highway)
- whether the vehicle will be required to carry cargo or passengers
- does the vehicle have the proper communications equipment and frequencies for the area of travel? (GPS, two-way radio, satellite phone)
- is the vehicle equipped to respond to an emergency or mechanical breakdown? (e.g. first aid kit, survival gear, tow device, booster cables, reflector devices)

Consider the makeup of your organization’s fleet. In some cases, temporary rental or contract vehicles will be utilized in the execution of work and may not be suitably equipped.

Environmental Considerations
Environmental conditions should also be considered:

- weather – near freezing temperatures, rain pooling on roads, strong / gusting crosswinds, shadowed areas slow to thaw, known snow drifting locations
- visibility – low light conditions, rain, fog, smoke, blowing snow
- traffic
- security risks
- animal activity
- current road conditions – snow, ice, wet surface, ruts, mud, potholes

3.1.3 Develop and / or Reference a Consolidated Risk Register
A risk register can be developed to document additional risks for relevant routes. Previous incident reports and driver experiences are included with the hazards identified for different routes in a risk register. The consolidated information can be used to improve the risk assessment of future trips.

3.1.4 Develop Risk Controls
Once potential hazards are identified, controls should be developed that are appropriate for each risk exposure. Risk controls can focus on:

- eliminating the situation, condition or activity that generates the risk
- reducing the probability of occurrence
- mitigating the consequences

Risk controls must consider regulatory compliance and industry best practice. Regulations governing hours of service for commercial drivers may also be helpful in developing risk controls and limits to a workday for non-commercial drivers.

The following examples demonstrate the use of risk controls:

EXAMPLE: As a risk control, Akita incorporates a 45 minute rule for land travel between accommodations and the work site. If travel exceeds 45 minutes controls are implemented such as extra personnel, drivers, or overnight accommodations. Distance is not used as the sole determining metric because some roads are slower driving (lease road or radio controlled road / gravel roads / paved roads).

For each trip, hazards and risks will be identified that may have controls developed within the company based on previous trips. Keeping records of these previously developed controls will provide an aide e.g., Risk Control Matrix that can be used to improve the development and application of controls for future trips.

EXAMPLE: As a risk control, Schlumberger adopted the term “Geo-zones” to assist with categorizing trips. Geographical zones were established for areas where trips are routine and less controls were considered necessary. Geo-zones may also be used to provide guidance for non-routine routes where risk assessments and controls can be standardized.

Convoys may be considered a risk control by controlling speeds, moving a crew in the correct sequence and ensuring assistance is readily available in case of need. A convoy may be two or more vehicles travelling to the same destination. Larger convoys may be split into two or three smaller convoys to minimize their impact on other users of the roadway.

3.1.5 **Evaluate the Trip Plan**

Plans will help to identify hazards across the company’s operating locations. In an effort to continually improve and update trip plans, other drivers can check and provide input to trip plans.

From the details in the plan, the journey manager should know:
where the driver is going
when they are going
the planned route

Depending on the level of risk and controls put in place, the plan may require approval and signatures of the driver and an appropriate level of supervisor or journey manager. An example journey management form can be found in Appendix 1.

The following is an example of a trip risk assessment form:

EXAMPLE: The Trip Risk Assessment phase of Schlumberger’s journey management process involves the completion of a journey management form. This form is completed prior to trips and is used to capture the trip description, the associated hazard assessment, and trip approvals as required. A total hazard score is calculated from the assigned point values of different hazards. The level of risk identifies the approval limits required for the trip. An example of the sign-off portion of the form is provided below.
3.2 Preparing for the Trip

Once the trip has been planned and approved, preparations can be made for the trip. This stage involves ensuring the vehicle is reliable, well maintained, and designed for the planned journey. To ensure this, a standardized vehicle inspection similar to National Safety Code – (NSC) Schedule 1 (a requirement for some commercial vehicles) may be helpful. Equipment inspections are also required as noted in the regulation section of this document (AB Code Part 19, Sec. 257). Proper documentation such as permits, certificates, Transportation of Dangerous Goods documents, waybills, and bills of lading must be organized and available. Basic tools and vehicle equipment as well as safety and emergency equipment (personal protective equipment and warning devices) must be checked and properly stored.

As operating conditions can and do change constantly, the trip plan may need to be revisited during the preparation stage to respond to changes in road conditions, weather, visibility, traffic, and the vehicle. It may be that the road conditions now require tire chains or four-wheel drive. During the preparation stage, it is also important to confirm:

- cargo is secure
- weights and dimensions are compliant
- seasonal restrictions (road bans, restricted travel around holidays, etc.)
- required maintenance and inspections have been completed

It is also important to confirm the driver’s fitness for duty or fatigue level that may result in reduced alertness. Workers should understand their duty to refuse unsafe work as it relates to journey management. Plans should include contingencies for situations where changing conditions may result in a work refusal.

3.3 Undertaking the Trip

A well-planned and prepared trip with all appropriate approvals secured will help the driver concentrate on the road with confidence. The driver should notify the appropriate person when the trip has commenced.

While the trip is executed, actions are required to ensure the driver, vehicle and cargo are safe and secured. Common actions by the driver may include:

- periodic rest stops
- scheduled stops to inspect cargo and equipment
- fuelling

Drivers need to monitor risks throughout the trip. Periodic communication should occur with the journey manager at pre-determined and agreed to intervals. These intervals may be customized based on the level of risk and the needs of the organization. Workers must self-
monitor their alertness and utilize any fatigue countermeasures to maintain alertness while driving. Integrated journey management programs that direct drivers to use rest locations and obtain restorative rest to manage fatigue-related risk can be of considerable benefit.

Although technology offers many benefits to control risks, plan to avoid distractions while driving. Drivers should know their contingency plans and emergency response plans to ensure they are prepared for problems that might occur during the trip. These may include:

- employer and client emergency response procedures
- emergency contacts and phone numbers
- emergency radio channel/frequency in remote areas
- location and contact information for nearest medical facility (hospital, camp medic)
- location of survival kit and emergency equipment
- alternate locations en route for fuel, accommodations or assistance in case of mechanical problems

 Supervisors or journey managers can assist the driver by monitoring weather and road conditions and informing drivers of changing conditions. Dispatch or call centres can also assist with monitoring and managing aspects of trips and may be the designated journey managers for the trip. These resources can check trip compliance, risk levels, share information and track trip status/location. Dispatch or call centres can also provide resources to follow-up with missing or late drivers, or assist with incident/panic alerts.

In-vehicle monitoring systems (IVMS) can also assist with journey management. IVMS technology can bring the lone worker closer to supervision through:

- integration as a communication system
- interface with other work flow processes
- monitoring of lone workers working in remote areas
- GPS, satellite & mapping for drivers and administrators
- vehicle telematics (speed, braking, seat belt use, idling)
- hours of service monitoring/compliance
- alertness monitoring

Although IVMS can be a useful tool, it is important to note that the use of IVMS technology alone does not, in itself, constitute a journey management program. Those wishing to further evaluate IVMS programs may find useful information in the OGP IVMS document referenced in Appendix 1.
3.4 Completing the Trip

A post-trip inspection and check-in with the journey manager to debrief the trip and closeout the journey should be conducted. At the completion of the trip, the driver should report any near misses so that improvements can be made to the trip plan. Post-trip vehicle inspections can identify necessary repairs and ensure the vehicle is in safe condition for the next trip.

A debrief provides an opportunity to report and share information about the trip to continuously refine and improve the hazard identification and risk assessment process. New information about hazards or updates to the conditions will improve the safety for the next driver and/or subsequent trips.

Vehicle performance measures may be kept for future review and/or audit purposes. This may include information such as:

- aggressive acceleration
- hard braking
- abrupt turns
- seatbelt use
- speeding
- idling

In addition to auditing driver performance, IVMS data can be used to provide feedback to stakeholders including drivers and supervisors with the goal of continuous improvement and behaviour change.
4.0 Program Review and Continuous Improvement

Any risk management program requires regular, formal evaluation to determine program effectiveness. Such evaluations may be performed on a quarterly or annual basis. Program evaluations measure the program’s overall goals and specific performance objectives. Reviews can ensure that processes and work practices align with the program.

During program development, an evaluation plan should be created which may include:

- pre-determined review dates
- scheduled reviews by senior management
- a feedback method involving all affected stakeholders and incorporating management accountability and participation (may include feedback to clients and regulators)
- a reliable data collection method e.g. empirical and anecdotal
- a meaningful analysis process with evaluation criteria based on overall program goals and specific performance objectives
- an efficient program document revision process

Through feedback captured during periodic reviews, areas of the program that are not working can be revised and continuous improvements can be made.
5.0 Summary

Land transportation is recognized as one of the most hazardous activities for the oil and gas industry. Implementation of a journey management program is a widely accepted approach to reduce motor vehicle incidents, injuries and delays. This guideline introduces the concept and program elements to consider when developing and implementing a journey management program. The journey management guideline and other information sources referenced will help build effective risk-based programs that are scalable to suit your specific operational capabilities.
Appendix 1: References and Resources

The list of documents and information sources provided below includes any documents or websites consulted in the research for this guideline or referred to within this guideline. Several additional sources that are useful for reference for basic information on fatigue science, health and safety programs are also included. This list is not exhaustive and any web addresses listed are current at the time of publication, but are subject to change.

<table>
<thead>
<tr>
<th>Document Name or Information Source</th>
<th>Web address / publication / resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document Name or Information Source</td>
<td>Web address / publication / resource</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Gas Producers</td>
<td></td>
</tr>
<tr>
<td>511: Alberta’s Official Road Reports</td>
<td>http://511.alberta.ca/</td>
</tr>
<tr>
<td>British Columbia Ministry of Transportation and Infrastructure: Traveler Information System</td>
<td>http://www.drivebc.ca/</td>
</tr>
<tr>
<td>Coalition for a Safer 63 / 881</td>
<td>http://www.safer63and881.com/resources/</td>
</tr>
</tbody>
</table>
Journey Management Plan Form (Example)

Journey Detail:
- **Origin:**
- **Destination:**
- **Vehicle Type:**
- **Driver Name(s):**
- **Unit Number(s):**

Journey Plan:
- **Reason for Journey**
- **Is trip necessary? Y/N**

Journey Segment:
<table>
<thead>
<tr>
<th>Date/Time Depart</th>
<th>Date/Time Arrive</th>
<th>Route</th>
<th>Road Type</th>
<th>(6-24) Risk Ranking</th>
<th>Hazard Description</th>
<th>Journey Manager Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risks / Controls / Additional Information
- **ERP in place?**
- **Nearest Emergency Assistance?**
- **Cargo is compliant?**
- **Route concerns?**
- **Check in frequency:**

Fatigue Controls

Journey Management Acknowledgement

Driver Details:
- **Name:**
- **Signature:**
- **Date:**
- **Phone:**

Supervisor / Manager approving Journey:
- **Name:**
- **Signature:**
- **Date:**
- **Phone:**

Road Type
- **Paved 1**
- **Gravel 2**
- **Off - Road 3**

Weather
- **Clear 1**
- **Wet 2**
- **Inclement 3**

Driver Experience
- **> 5 years 1**
- **1 - 5 years 2**
- **< 1 year 3**

Light
- **Daylight 1**
- **Sunrise / sunset 2**
- **Darkness 3**

Communications
- **Monitored tracking 1**
- **2-way / Cell phone 2**
- **None 3**

Traffic Volume
- **< 30 min 1**
- **30 min - 2 hrs 2**
- **> 2 hrs 3**

Urban / Rural
- **Urban 1**
- **Combination 2**
- **Rural 3**

Risk Ranking (by segment)
- **1-6 supervisor approval req'd**
- **7-16 manager approval req'd**
- **17-24 VP approval req'd**

Notes:
- If travelling as part of a group, record convey detail / sequence of the rear of this form.

Form available from safety@enform.ca
Policy example: The Wood Group adopted principles of journey management in their driving policy with reference to risk assessment. The policy aligns closely with OGP RP 365 and includes key aspects of a Journey Management Plan.

Driving policy - Road journeys should only be undertaken where deemed necessary for the achievement of business objectives and after any safer options have been excluded (i.e., air, rail, ferry, and teleconference).

When a road trip is necessary or unavoidable, risks will be assessed. The level of risk assessment and mitigation will vary; a regular, short or routine journey might warrant only some personal thought as to the risks. In other circumstances, such as in regions with security issues or particularly arduous conditions, the driver and the Supervisor will put a journey management plan in place. The journey management plan will ensure that:

- Formal pre-trip briefings are held and documented. This will include a review between driver and Supervisor of routes, stops, hazards, loads, the requirement for the driver to report completion of the journey, and contingency plans for en-route emergencies.
- Appropriate means of communication between driver and Supervisor are available and a communications protocol agreed.
- The route is clearly defined and mapped.
- Potential driving hazards are identified in advance, taking into consideration the terrain, time of day, weather, known dangerous routes, speed limits and holidays (especially those that involve fasting or alcohol).
- Appropriate vehicles are assigned to the journey.
- Only qualified and experienced drivers are assigned with current certification for the type of vehicles to be used.
- Drivers should be physically and mentally fit.
- Journey planning should take into account potential fatigue. For example, the number of hours worked beforehand and prior sleep should be considered. Appropriate rest stops for food and drink intake should be scheduled.
- Vehicles are inspected before the journey begins.
- All trips during the hours of darkness or during times of reduced visibility will be systematically reviewed for risk and may be subject to formal management approval before they begin. Risk assessment will consider the risk of the terrain, snow, dust, smoke, fog, heavy rains, security risks, and local driving practices.
- Journey planning will consider the risk brought about by the environment, culture and local wildlife (examples will vary by location, but might typically include livestock, moose, deer, etc.).
- In environments where visibility of the vehicle can be problematic for other people (road users and pedestrians), and where permitted by local law, vehicles will drive with their lights illuminated at all times, unless specific risks (e.g., security) determine that such a practice is not recommended. This includes low beam (dipped) headlights, side marker lights and tail-lights to ensure vehicles are visible from all directions.
- Adequate arrangements have been made for rescue/recovery in the event of a breakdown.
Risk assessment example: The Primary Risk Assessment phase of Schlumberger’s journey management process incorporates a Road Hazard Analysis. This analysis is completed prior to trips taking place and is used for frequently travelled, high risk, new project routes.

Road Hazard Assessment

<table>
<thead>
<tr>
<th>RHA Number: 001</th>
<th>Assessment Date: Feb 18, 2011</th>
<th>Maximum Advised Speed(s):</th>
</tr>
</thead>
</table>
| Start Point: Fort McMurray
End Point: Cold Lake | Radio Control □ Cell Phone □ Radio Frequency: | 100 KPH □ MPH |

Assessor(s):

Conditions at time of Assessment:

| Road (average): Partially snow covered | Weather: Blowing Snow | Light: Daylight | Temp: -20 |

Road Directions & Detail:

Starting point: Shell bulk station Fort McMurray on Highway 63

Hwy 63 S, Sec Hwy 881 S, Hwy 36 S, Hwy 55 E, Hwy 41 S

Hazard Register

<table>
<thead>
<tr>
<th>KM / MI</th>
<th>Hazard</th>
<th>Risk Rank</th>
<th>GPS Location</th>
<th>Cell SS</th>
<th>Detail, Control and Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Heavy City Traffic</td>
<td>▼</td>
<td>56.6827 111.3539</td>
<td>5</td>
<td>Starting point City of Fort McMurray</td>
</tr>
<tr>
<td>18.8</td>
<td>Junction Hwy 63/881</td>
<td>▼</td>
<td>56.5202 111.3173</td>
<td>5</td>
<td>Double highway intersection crossing</td>
</tr>
<tr>
<td>19.5</td>
<td>Scale/Truck Stop</td>
<td>▼</td>
<td>56.518 111.309</td>
<td>5</td>
<td>Scale/Rest area heavy vehicle traffic going in and out</td>
</tr>
<tr>
<td>32.2</td>
<td>Speed Reduction</td>
<td>▼</td>
<td>56.446 111.1844</td>
<td>5</td>
<td>Speed reduction from 100 to 70 km</td>
</tr>
<tr>
<td>34.0</td>
<td>Speed Up</td>
<td>▼</td>
<td>56.4363 111.1646</td>
<td>5</td>
<td>Speed up from 70 to 100 km</td>
</tr>
<tr>
<td>36.7</td>
<td>Speed Reduction</td>
<td>▼</td>
<td>5</td>
<td>Speed reduction to 50 km</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Speed Up</td>
<td>▼</td>
<td>5</td>
<td>Speed up to 100 km</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Speed Reduction</td>
<td>▼</td>
<td>5</td>
<td>Speed reduction to 80 km, Anzac</td>
<td></td>
</tr>
<tr>
<td>42.3</td>
<td>Speed Up</td>
<td>▼</td>
<td>56.4251 111.0481</td>
<td>5</td>
<td>Long Lake Project</td>
</tr>
<tr>
<td>62.4</td>
<td>Heavy Truck Turning</td>
<td>▼</td>
<td>56.2597 110.9216</td>
<td>5</td>
<td>Stat Oil Project</td>
</tr>
<tr>
<td>63.8</td>
<td>Heavy Truck Turning</td>
<td>▼</td>
<td>56.2509 110.9061</td>
<td>5</td>
<td>Surmont Project</td>
</tr>
<tr>
<td>66.8</td>
<td>Steep Hill</td>
<td>▼</td>
<td>56.2271 110.8842</td>
<td>5</td>
<td>Steep hill on both sides with a small bridge at the bottom</td>
</tr>
<tr>
<td>82.3</td>
<td>Rail Track</td>
<td>▼</td>
<td>56.0992 110.8948</td>
<td>5</td>
<td>Rail track crossing, markers but no gates</td>
</tr>
<tr>
<td>Location</td>
<td>Address/Street</td>
<td>City, Province</td>
<td>Phone</td>
<td>Toll free</td>
<td>Fax</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>ENFORM CALGARY</td>
<td>5055 - 11th St NE</td>
<td>Calgary, Alberta</td>
<td>403.516.8000</td>
<td>1.800.667.5557</td>
<td>403.516-8166</td>
</tr>
<tr>
<td>ENFORM BC</td>
<td>#1240, 9600 - 93rd Ave.</td>
<td>Fort St. John, British Columbia</td>
<td>250.785.6009</td>
<td>1.855.436.3676</td>
<td>250.785.6013</td>
</tr>
<tr>
<td>ENFORM NISKU</td>
<td>1803 11th Street</td>
<td>Nisku, Alberta</td>
<td>780.955.7770</td>
<td>1.800.667.5557</td>
<td>780.955.2454</td>
</tr>
<tr>
<td>ENFORM SASKATCHEWAN</td>
<td>Suite 208, 117 - 3rd St NE</td>
<td>Weyburn, Saskatchewan</td>
<td>306.842.9822</td>
<td>1.877.336.3676</td>
<td>306.337.9610</td>
</tr>
</tbody>
</table>